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The well-known problem of the rolling without slipping of a heavy circular disc along a horizontal plane is considered. The steady 
motions of a disc for which the angle between the plane of the disc and the supporting plane (the angle of nutation) is constant 
are investigated. The problem of the range of variation of the angle of nutation within which the given motions are stable, 
irrespective of the values of the constants of the two linear first integrals or, in other variables, irrespective of the angular velocities 
of precession and proper rotation, is investigated. It is shown that this range is wider than was established earlier in [l]. 0 2001 
Elsevier Science Ltd. All rights reserved. 

The steady motions of a disc for which the angle of nutation is constant are termed [l] steady rollings (SRs). Earlier 
[l-5], the conditions of their existence and stability were obtained by different methods. It was noted in [4] that 
SRs form a two-dimensional manifold. The purpose of the present paper is to distinguish on this manifold the 
regions in which the known conditions of stability are certainly satisfied. 

The equations of motion of a disc on a perfectly rough plane admit of three first integrals: the energy integral 

2H=(A, +ma2)6* +Alq2+(A~+ma2)r2+2mgasin~=2h=const 

and two linear integrals, specified implicitly by the relations (everywhere henceforth summation over the indices 
i and j is carried out from 1 to 2) 

r=C UiCi. U;=F &&I; 

i ( I +(-I)’ case 

2 I 
, ci = const, i= I,2 

q = &sinO~ (-I) ‘+‘YjC;, vi=F 5+1,~+1,2; 
( 

I +(-I)‘cose 

I i 2 1 

and having the form of hypergeometric series. 
Here, m is the mass of the disc, II is its radius, Ai and A3 are respectively the equatorial and axial moments of 

inertia, g is the acceleration due to gravity, 8 is the angle of nutation, q and r are the projections of the angular 
velocity of the disc onto the line of maximum slope and onto the normal to the plane of the disc, and F is the 
hypergeometric function, the parameters 5 and n of which are roots of the quadratic equation 

s2 -s+B=O, B= 
ma2A3 

A,(A, +ma*) 

Below, we will assume that these parameters are complex conjugate quantities, i.e. that the following inequality 
holds 

B>j/, (2) 

Let W be the minimum of the function H with respect to the variables& r and q on the level of the ci and c2 
integrals, specified implicitly by relations (1). Hence 

B’=ig 
1.J C 

A32 (A,+ma2)uiuj+(-l)“i~sin2Bu,~j cicj+mgasine 
I 1 

The expression for W can be rewritten in dimensionless form 
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W=t& WiiXiXj +sint3. Wi =(2k+I)uiUj +(-lj’+jksin20uivj 
1-J 

A, = km’, A, =2kma*, x; =c;,&. ;=I,2 

Inequality (2) then becomes the inequality k < 3.5. 
It is well known (see [l-S]) that the disc is able to execute SR, i.e. motions specified by the relations 

8 = a = const, 6 = 0, 9 = const, r = const 

The angle ct is determined from the equation dlV]&] aCcc = 0. It was shown in [l] that any SR is stable if the 
angle 0 lies in the range (0; n/4]. Detailed analysis of the conditions of stability enable us to simplify this result. 

The equation dlV]dB ]aCcc = 0 can be written in explicit form as follows: 

z aiiX;Xj -COSU =O (3) 
Lj 

For each fixed a f rc/2, Eq. (3) gives a hyperbola, but when a = n/2 it gives a pair of intersecting straight lines [6]. 
The condition for SR to be stable obtained using the modified Routh Salvadori theorem [5], has the form 

d2WldB2 1 O=a 2 0, or 

x bilX;Xj -sine 2 0 (4) 
i.j 

bq =bji = 2(2k + I)UiUj +(3k +&osa((-l)‘uJv, +(-I)‘u,u~)+ 

+ (-l)‘+‘((k + I)sin2a+3kcosZ a)v,uj 

For each fixed a, if k > l/a - l/2, the boundary of the region of stability is an ellipse, the stable region lying 
outside this ellipse and the unstable region within it. 

Thus, if, for some fixed a, the hyperbola (3) and the ellipse (4) do not intersect, then steady rolling, for which 
t3 = a, will be stable irrespective of the values ofx;(i = 1, 2). 

We will investigate this problem in more detail. From Eq. (3) we express the variablex2 (for a < n/2 this is possible 
for anyxr) and substitute it into inequality (4). We obtain 

3 rt2(a,*b** -a&7,* lx, (4, - a, p2* )xf + a2* cosa 

G = G(a) = (b2* cosa- a22 sina) 

(5) 

By direct checking it can be proved that the coefficient ofx: on the left-hand side of the inequality in the range 
a E (0; n) is positive. The quantity az2 is also positive in this range. The expression for G(a) in the range (0; a,) 
acquires a positive values, while in the range (Ccl; n) it acquires negative values. Here, a, = al(k is the root 
of the equation G(a) = 0. 

Thus, in the range (0; a,), on the left-hand side of inequality (5) there is obviously a positive expression, which 
enables both sides of this inequality to be squared. The following biquadratic inequality is obtained. 

(6) 

PI =2(2k+l)*(k+1)(2k+sin2a)sin2a(+ul +u,v~)~ >O 

p2 = (2k+l)*Gcos2a-- 
Su22 sina 

I 
-((u2u, +u,u2)*, p3 =G* L 0 

sina cosa 

Inequality (6) holds for any value of x, if one of the following two conditions is satisfied: 
(a) the discriminant of the corresponding biquadratic equation is negative; 

(b) ~2 ’ 0. 
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By direct checking it can be shown that condition (a) is equivalent to the condition S < 0, or in explicit form 

co? a>cos*a, = 
2(2k + 1)[(4k +3)-J6(2k + I)(k + I)] 

(2k +3)* +3(2k+ I)* 

Furthermore, both analytically and by numerical experiment it can be shown that, for any k from the interval 
considered, the inequality 

a3<a2 <aI 

holds. Here, a3 = a3(k) is the root of the equationP2(a) = 0, wherepz(a) > 0 when a < a3. 
Consequently, the SR is stable when a E (0; a& i.e. for all a satisfying inequality (7). For example, for a 

homogeneous disc (k = l/4) we have 

cos2a>(24-9&)/38=0,102 

It can be seen that the given range of variation of a is wider than the interval (0; n/4). 

I wish to thank A. V. Karapetyan for his interest. 
This research was supported financially by the Russian Foundation for Basic Research (98-01~00041,00-15-96150). 

1. 
2. 
3. 

4. 
5. 

6. 

REFERENCES 

FEDOROV Yu. N., The rolling of a disc over a perfectly rough plane. Izv. Akud. Nauk. SSSR. MTT, 1987, 4, 67-75. 
DUVAKIN, A. I? The stability of the motion of a disc. I&z. Zhwn., 1965, 5,3-9. 
NEIMARK Yu. I. and FUFAEV, N. A., Dynamics of Nonholonomic Systems. Translations of Mathematical Monographs, 
Vol. 33. A M S, Providence, RI, 1972. 
MARKEEV, A. I?, Dynamics of a Body Being Contiguous to a Rigid Surface. Nauka, Moscow, 1992. 
KARAPETYAN, A. V, Invariant sets of mechanical systems. In Modem Methods ofAnalytical Mechanics and theirApplications. 
CISM Courses and Lectures, Vol. 387. Springer, Vienna, 1998,153-210. 
KULESHOV, A. S., The steady motions of a disc on a perfectly rough plane. Priki. Mat. Mekh., 1999,63,5,797-800. 

Translated by P.S.C. 


